Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38352361

RESUMO

Natural killer (NK) cells are currently in use as immunotherapeutic agents for cancer. Many different cytokines are used to generate NK cells including IL-2, IL-12, IL-15 and IL-18 in solution and membrane bound IL-21. These cytokines drive NK cell activation through the integration of STAT and NF-κB pathways, which overlap and synergize, making it challenging to predict optimal cytokine combinations. We integrated functional assays for NK cells cultured in a variety of cytokine combinations with feature selection and mechanistic regression models. Our regression model successfully predicts NK cell proliferation for different cytokine combinations and indicates synergy between STAT3 and NF-κB transcription factors. Use of IL-21 in solution in the priming, but not post-priming phase of NK cell culture resulted in optimal NK cell proliferation, without compromising cytotoxicity or IFN-γ secretion against hepatocellular carcinoma cell lines. Our work provides a mathematical framework for interrogating NK cell activation for cancer immunotherapy.

2.
NPJ Syst Biol Appl ; 9(1): 46, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37736766

RESUMO

Mechanistic models are commonly employed to describe signaling and gene regulatory kinetics in single cells and cell populations. Recent advances in single-cell technologies have produced multidimensional datasets where snapshots of copy numbers (or abundances) of a large number of proteins and mRNA are measured across time in single cells. The availability of such datasets presents an attractive scenario where mechanistic models are validated against experiments, and estimated model parameters enable quantitative predictions of signaling or gene regulatory kinetics. To empower the systems biology community to easily estimate parameters accurately from multidimensional single-cell data, we have merged a widely used rule-based modeling software package BioNetGen, which provides a user-friendly way to code for mechanistic models describing biochemical reactions, and the recently introduced CyGMM, that uses cell-to-cell differences to improve parameter estimation for such networks, into a single software package: BioNetGMMFit. BioNetGMMFit provides parameter estimates of the model, supplied by the user in the BioNetGen markup language (BNGL), which yield the best fit for the observed single-cell, time-stamped data of cellular components. Furthermore, for more precise estimates, our software generates confidence intervals around each model parameter. BioNetGMMFit is capable of fitting datasets of increasing cell population sizes for any mechanistic model specified in the BioNetGen markup language. By streamlining the process of developing mechanistic models for large single-cell datasets, BioNetGMMFit provides an easily-accessible modeling framework designed for scale and the broader biochemical signaling community.


Assuntos
Transdução de Sinais , Software , Cinética , RNA Mensageiro , Transdução de Sinais/genética , Biologia de Sistemas
3.
Life Sci Alliance ; 6(10)2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37507138

RESUMO

CAR T cells are engineered to bind and destroy tumor cells by targeting overexpressed surface antigens. However, healthy cells expressing lower abundances of these antigens can also be lysed by CAR T cells. Various CAR T cell designs increase tumor cell elimination, whereas reducing damage to healthy cells. However, these efforts are costly and labor-intensive, constraining systematic exploration of potential hypotheses. We develop a protein abundance structured population dynamic model for CAR T cells (PASCAR), a framework that combines multiscale population dynamic models and multi-objective optimization approaches with data from cytometry and cytotoxicity assays to systematically explore the design space of constitutive and tunable CAR T cells. PASCAR can quantitatively describe in vitro and in vivo results for constitutive and inducible CAR T cells and can successfully predict experiments outside the training data. Our exploration of the CAR design space reveals that optimal CAR affinities in the intermediate range of dissociation constants effectively reduce healthy cell lysis, whereas maintaining high tumor cell-killing rates. Furthermore, our modeling offers guidance for optimizing CAR expressions in synthetic notch CAR T cells. PASCAR can be extended to other CAR immune cells.


Assuntos
Receptores de Antígenos de Linfócitos T , Linfócitos T , Receptores de Antígenos de Linfócitos T/metabolismo , Imunoterapia Adotiva/métodos , Linhagem Celular Tumoral
4.
Quant Biol ; 11(1): 59-71, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37123637

RESUMO

Background: Mass cytometry (CyTOF) gives unprecedented opportunity to simultaneously measure up to 40 proteins in single cells, with a theoretical potential to reach 100 proteins. This high-dimensional single-cell information can be very useful in dissecting mechanisms of cellular activity. In particular, measuring abundances of signaling proteins like phospho-proteins can provide detailed information on the dynamics of single-cell signaling processes. However, computational analysis is required to reconstruct such networks with a mechanistic model. Methods: We propose our Mass cytometry Signaling Network Analysis Code (McSNAC), a new software capable of reconstructing signaling networks and estimating their kinetic parameters from CyTOF data. McSNAC approximates signaling networks as a network of first-order reactions between proteins. This assumption often breaks down as signaling reactions can involve binding and unbinding, enzymatic reactions, and other nonlinear constructions. Furthermore, McSNAC may be limited to approximating indirect interactions between protein species, as cytometry experiments are only able to assay a small fraction of protein species involved in signaling. Results: We carry out a series of in silico experiments here to show (1) McSNAC is capable of accurately estimating the ground-truth model in a scalable manner when given data originating from a first-order system; (2) McSNAC is capable of qualitatively predicting outcomes to perturbations of species abundances in simple second-order reaction models and in a complex in silico nonlinear signaling network in which some proteins are unmeasured. Conclusions: These findings demonstrate that McSNAC can be a valuable screening tool for generating models of signaling networks from time-stamped CyTOF data.

5.
J Immunother Cancer ; 10(9)2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36096533

RESUMO

BACKGROUND: Immune checkpoint blockade (ICB) has revolutionized cancer immunotherapy. However, most patients with cancer fail to respond clinically. One potential reason is the accumulation of immunosuppressive transforming growth factor ß (TGFß) in the tumor microenvironment (TME). TGFß drives cancer immune evasion in part by inducing regulatory T cells (Tregs) and limiting CD8+ T cell function. Glycoprotein-A repetitions predominant (GARP) is a cell surface docking receptor for activating latent TGFß1, TGFß2 and TGFß3, with its expression restricted predominantly to effector Tregs, cancer cells, and platelets. METHODS: We investigated the role of GARP in human patients with cancer by analyzing existing large databases. In addition, we generated and humanized an anti-GARP monoclonal antibody and evaluated its antitumor efficacy and underlying mechanisms of action in murine models of cancer. RESULTS: We demonstrate that GARP overexpression in human cancers correlates with a tolerogenic TME and poor clinical response to ICB, suggesting GARP blockade may improve cancer immunotherapy. We report on a unique anti-human GARP antibody (named PIIO-1) that specifically binds the ligand-interacting domain of all latent TGFß isoforms. PIIO-1 lacks recognition of GARP-TGFß complex on platelets. Using human LRRC32 (encoding GARP) knock-in mice, we find that PIIO-1 does not cause thrombocytopenia; is preferentially distributed in the TME; and exhibits therapeutic efficacy against GARP+ and GARP- cancers, alone or in combination with anti-PD-1 antibody. Mechanistically, PIIO-1 treatment reduces canonical TGFß signaling in tumor-infiltrating immune cells, prevents T cell exhaustion, and enhances CD8+ T cell migration into the TME in a C-X-C motif chemokine receptor 3 (CXCR3)-dependent manner. CONCLUSION: GARP contributes to multiple aspects of immune resistance in cancer. Anti-human GARP antibody PIIO-1 is an efficacious and safe strategy to block GARP-mediated LTGFß activation, enhance CD8+ T cell trafficking and functionality in the tumor, and overcome primary resistance to anti-PD-1 ICB. PIIO-1 therefore warrants clinical development as a novel cancer immunotherapeutic.


Assuntos
Neoplasias , Microambiente Tumoral , Animais , Linfócitos T CD8-Positivos/metabolismo , Glicoproteínas , Humanos , Inibidores de Checkpoint Imunológico , Proteínas de Membrana , Camundongos , Fator de Crescimento Transformador beta/metabolismo
6.
PLoS Comput Biol ; 18(5): e1010114, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35584138

RESUMO

Natural Killer (NK) cells provide key resistance against viral infections and tumors. A diverse set of activating and inhibitory NK cell receptors (NKRs) interact with cognate ligands presented by target host cells, where integration of dueling signals initiated by the ligand-NKR interactions determines NK cell activation or tolerance. Imaging experiments over decades have shown micron and sub-micron scale spatial clustering of activating and inhibitory NKRs. The mechanistic roles of these clusters in affecting downstream signaling and activation are often unclear. To this end, we developed a predictive in silico framework by combining spatially resolved mechanistic agent based modeling, published TIRF imaging data, and parameter estimation to determine mechanisms by which formation and spatial movements of activating NKG2D microclusters affect early time NKG2D signaling kinetics in a human cell line NKL. We show co-clustering of NKG2D and the guanosine nucleotide exchange factor Vav1 in NKG2D microclusters plays a dominant role over ligand (ULBP3) rebinding in increasing production of phospho-Vav1(pVav1), an activation marker of early NKG2D signaling. The in silico model successfully predicts several scenarios of inhibition of NKG2D signaling and time course of NKG2D spatial clustering over a short (~3 min) interval. Modeling shows the presence of a spatial positive feedback relating formation and centripetal movements of NKG2D microclusters, and pVav1 production offers flexibility towards suppression of activating signals by inhibitory KIR ligands organized in inhomogeneous spatial patterns (e.g., a ring). Our in silico framework marks a major improvement in developing spatiotemporal signaling models with quantitatively estimated model parameters using imaging data.


Assuntos
Células Matadoras Naturais , Subfamília K de Receptores Semelhantes a Lectina de Células NK , Proteínas Proto-Oncogênicas c-vav , Análise por Conglomerados , Simulação por Computador , Humanos , Células Matadoras Naturais/imunologia , Cinética , Ligantes , Ativação Linfocitária , Subfamília K de Receptores Semelhantes a Lectina de Células NK/imunologia , Proteínas Proto-Oncogênicas c-vav/imunologia , Transdução de Sinais/imunologia
7.
PLoS Comput Biol ; 18(3): e1009931, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35312683

RESUMO

Cytometry experiments yield high-dimensional point cloud data that is difficult to interpret manually. Boolean gating techniques coupled with comparisons of relative abundances of cellular subsets is the current standard for cytometry data analysis. However, this approach is unable to capture more subtle topological features hidden in data, especially if those features are further masked by data transforms or significant batch effects or donor-to-donor variations in clinical data. We present that persistent homology, a mathematical structure that summarizes the topological features, can distinguish different sources of data, such as from groups of healthy donors or patients, effectively. Analysis of publicly available cytometry data describing non-naïve CD8+ T cells in COVID-19 patients and healthy controls shows that systematic structural differences exist between single cell protein expressions in COVID-19 patients and healthy controls. We identify proteins of interest by a decision-tree based classifier, sample points randomly and compute persistence diagrams from these sampled points. The resulting persistence diagrams identify regions in cytometry datasets of varying density and identify protruded structures such as 'elbows'. We compute Wasserstein distances between these persistence diagrams for random pairs of healthy controls and COVID-19 patients and find that systematic structural differences exist between COVID-19 patients and healthy controls in the expression data for T-bet, Eomes, and Ki-67. Further analysis shows that expression of T-bet and Eomes are significantly downregulated in COVID-19 patient non-naïve CD8+ T cells compared to healthy controls. This counter-intuitive finding may indicate that canonical effector CD8+ T cells are less prevalent in COVID-19 patients than healthy controls. This method is applicable to any cytometry dataset for discovering novel insights through topological data analysis which may be difficult to ascertain otherwise with a standard gating strategy or existing bioinformatic tools.


Assuntos
COVID-19 , Linfócitos T CD8-Positivos , Citometria de Fluxo , Humanos , Proteínas com Domínio T/metabolismo
8.
Sci Signal ; 14(708): eabe5380, 2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34752140

RESUMO

Interactions between human leukocyte antigen (HLA) molecules on target cells and the inhibitory killer cell immunoglobulin-like receptors (KIRs) and heterodimeric inhibitory receptor CD94-NKG2A on human natural killer (NK) cells shape and program various response capacities. A functionally orthologous system exists in mice, consisting of major histocompatibility complex (MHC) molecules on target cells and the inhibitory Ly49 and CD94-NKG2A receptors on NK cells. Here, we found that the abundance of Src homology 2 domain­containing phosphatase-1 (SHP-1) in NK cells was established by interactions between MHCs and NK cell inhibitory receptors, although phenotypically identical NK cell populations still showed substantial variability in endogenous SHP-1 abundance and NK cell response potential. Human and mouse NK cell populations with high responsiveness had low SHP-1 abundance, and a reduction in SHP-1 abundance in NK cells enhanced their responsiveness. Computational modeling of NK cell activation by membrane-proximal signaling events identified SHP-1 as a negative amplitude regulator, which was validated by single-cell analysis of human NK cell responsiveness. The amount of mRNA and protein varied among responsive NK cells despite their similar chromatin accessibility to that of unresponsive cells, suggesting dynamic regulation of SHP-1 abundance. Low intracellular SHP-1 abundance was a biomarker of responsive NK cells. Together, these data suggest that enhancing NK cell function through the acute loss of SHP-1 abundance or activity may enhance the tumoricidal capacity of NK cells.


Assuntos
Células Matadoras Naturais , Proteína Tirosina Fosfatase não Receptora Tipo 6
9.
bioRxiv ; 2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-33948593

RESUMO

Cytometry experiments yield high-dimensional point cloud data that is difficult to interpret manually. Boolean gating techniques coupled with comparisons of relative abundances of cellular subsets is the current standard for cytometry data analysis. However, this approach is unable to capture more subtle topological features hidden in data, especially if those features are further masked by data transforms or significant batch effects or donor-to-donor variations in clinical data. We present that persistent homology, a mathematical structure that summarizes the topological features, can distinguish different sources of data, such as from groups of healthy donors or patients, effectively. Analysis of publicly available cytometry data describing non-naïve CD8+ T cells in COVID-19 patients and healthy controls shows that systematic structural differences exist between single cell protein expressions in COVID-19 patients and healthy controls. Our method identifies proteins of interest by a decision-tree based classifier and passes them to a kernel-density estimator (KDE) for sampling points from the density distribution. We then compute persistence diagrams from these sampled points. The resulting persistence diagrams identify regions in cytometry datasets of varying density and identify protruded structures such as 'elbows'. We compute Wasserstein distances between these persistence diagrams for random pairs of healthy controls and COVID-19 patients and find that systematic structural differences exist between COVID-19 patients and healthy controls in the expression data for T-bet, Eomes, and Ki-67. Further analysis shows that expression of T-bet and Eomes are significantly downregulated in COVID-19 patient non-naïve CD8+ T cells compared to healthy controls. This counter-intuitive finding may indicate that canonical effector CD8+ T cells are less prevalent in COVID-19 patients than healthy controls. This method is applicable to any cytometry dataset for discovering novel insights through topological data analysis which may be difficult to ascertain otherwise with a standard gating strategy or in the presence of large batch effects. AUTHOR SUMMARY: Identifying differences between cytometry data seen as a point cloud can be complicated by random variations in data collection and data sources. We apply persistent homology used in topological data analysis to describe the shape and structure of the data representing immune cells in healthy donors and COVID-19 patients. By looking at how the shape and structure differ between healthy donors and COVID-19 patients, we are able to definitively conclude how these groups differ despite random variations in the data. Furthermore, these results are novel in their ability to capture shape and structure of cytometry data, something not described by other analyses.

10.
Nat Nanotechnol ; 15(8): 716-723, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32601450

RESUMO

Vaccine efficacy can be increased by arraying immunogens in multivalent form on virus-like nanoparticles to enhance B-cell activation. However, the effects of antigen copy number, spacing and affinity, as well as the dimensionality and rigidity of scaffold presentation on B-cell activation remain poorly understood. Here, we display the clinical vaccine immunogen eOD-GT8, an engineered outer domain of the HIV-1 glycoprotein-120, on DNA origami nanoparticles to systematically interrogate the impact of these nanoscale parameters on B-cell activation in vitro. We find that B-cell signalling is maximized by as few as five antigens maximally spaced on the surface of a 40-nm viral-like nanoparticle. Increasing antigen spacing up to ~25-30 nm monotonically increases B-cell receptor activation. Moreover, scaffold rigidity is essential for robust B-cell triggering. These results reveal molecular vaccine design principles that may be used to drive functional B-cell responses.


Assuntos
Antígenos Virais/imunologia , Linfócitos B/imunologia , DNA/ultraestrutura , Ativação Linfocitária/imunologia , Nanoestruturas/ultraestrutura , Vacinas contra a AIDS , Animais , Antígenos Virais/química , Antígenos Virais/ultraestrutura , Linhagem Celular , DNA/química , Feminino , Proteína gp120 do Envelope de HIV/química , Proteína gp120 do Envelope de HIV/imunologia , Camundongos , Nanoestruturas/química , Conformação de Ácido Nucleico , Transdução de Sinais
11.
J R Soc Interface ; 16(160): 20190389, 2019 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-31771450

RESUMO

Respiratory syncytial virus (RSV) is a common virus that can have varying effects ranging from mild cold-like symptoms to mortality depending on the age and immune status of the individual. We combined mathematical modelling using ordinary differential equations (ODEs) with measurement of RSV infection kinetics in primary well-differentiated human bronchial epithelial cultures in vitro and in immunocompetent and immunosuppressed cotton rats to glean mechanistic details that underlie RSV infection kinetics in the lung. Quantitative analysis of viral titre kinetics in our mathematical model showed that the elimination of infected cells by the adaptive immune response generates unique RSV titre kinetic features including a faster timescale of viral titre clearance than viral production, and a monotonic decrease in the peak RSV titre with decreasing inoculum dose. Parameter estimation in the ODE model using a nonlinear mixed effects approach revealed a very low rate (average single-cell lifetime > 10 days) of cell lysis by RSV before the adaptive immune response is initiated. Our model predicted negligible changes in the RSV titre kinetics at early times post-infection (less than 5 dpi) but a slower decay in RSV titre in immunosuppressed cotton rats compared to that in non-suppressed cotton rats at later times (greater than 5 dpi) in silico. These predictions were in excellent agreement with the experimental results. Our combined approach quantified the importance of the adaptive immune response in suppressing RSV infection in cotton rats, which could be useful in testing RSV vaccine candidates.


Assuntos
Imunidade Adaptativa , Modelos Imunológicos , Infecções por Vírus Respiratório Sincicial/imunologia , Vírus Sinciciais Respiratórios/imunologia , Animais , Infecções por Vírus Respiratório Sincicial/patologia , Sigmodontinae
12.
J Phys Chem B ; 123(49): 10323-10330, 2019 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-31577902

RESUMO

Cellular functions are mediated by specific molecular interactions; however, often competing nonspecific interactions can occur instead, for example, in noncoding regions of genes during transcription or in the response of cell receptors to external signals. Various functional roles have been proposed for such interactions. Motivated by these considerations, we study the time-dependent behavior of a class of discrete, stochastic models in which decoy molecules mediate nonspecific reactions that sequester activated molecules. It is shown that such nonspecific interactions can lead to a time delay in the completion of the specific reaction by the activated molecule, thus permitting discrimination between signals of different duration. We study the effect of stochastic fluctuations in a simple model of gene transcription by numerical solution of the Master Equation and find that the distribution of first passage times for the specific reaction shows surprising nonexponential (non-Debye) behavior over a range of time scales. The mathematical mechanism underlying this behavior is explained in terms of the behavior of the eigensystem of the linear operator associated with the time evolution. Our results demonstrate that stochastic sequestration can be used to enhance the specificity achieved by the well-known kinetic proofreading mechanism.


Assuntos
Tomada de Decisões , Análise de Célula Única , DNA/química , Cinética , Simulação de Dinâmica Molecular , Processos Estocásticos , Fatores de Transcrição/química
14.
mSphere ; 4(4)2019 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-31366707

RESUMO

Biofilms formed by nontypeable Haemophilus influenzae (NTHI) bacteria play an important role in multiple respiratory tract diseases. Visual inspection of the morphology of biofilms formed during chronic infections shows distinct differences from biofilms formed in vitro To better understand these differences, we analyzed images of NTHI biofilms formed in the middle ears of Chinchilla lanigera and developed an in silico agent-based model of the formation of NTHI biofilms in vivo We found that, as in vitro, NTHI bacteria are organized in self-similar patterns; however, the sizes of NTHI clusters in vivo are more than 10-fold smaller than their in vitro counterparts. The agent-based model reproduced these patterns and suggested that smaller clusters occur due to elimination of planktonic NTHI cells by the host responses. Estimation of model parameters by fitting simulation results to imaging data showed that the effects of several processes in the model change during the course of the infection.IMPORTANCE Multiple respiratory illnesses are associated with formation of biofilms within the human airway by NTHI. However, a substantial amount of our understanding of the mechanisms that underlie NTHI biofilm formation is obtained from in vitro studies. Our in silico model that describes biofilm formation by NTHI within the middle ears of Chinchilla lanigera will help isolate processes potentially responsible for the differences between the morphologies of biofilms formed in vivo versus those formed in vitro Thus, the in silico model can be used to glean mechanisms that underlie biofilm formation in vivo and connect those mechanisms to those obtained from in vitro experiments. The in silico model developed here can be extended to investigate potential roles of specific host responses (e.g., mucociliary clearance) on NTHI biofilm formation in vivo The developed computational tools can also be used to analyze and describe biofilm formation by other bacterial species in vivo.


Assuntos
Biofilmes/crescimento & desenvolvimento , Haemophilus influenzae/fisiologia , Interações entre Hospedeiro e Microrganismos , Modelos Biológicos , Animais , Chinchila , Simulação por Computador , Orelha Média/microbiologia , Haemophilus influenzae/classificação , Cinética , Método de Monte Carlo
15.
J Leukoc Biol ; 105(6): 1305-1317, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31063614

RESUMO

The use of mathematical and computational tools in investigating Natural Killer (NK) cell biology and in general the immune system has increased steadily in the last few decades. However, unlike the physical sciences, there is a persistent ambivalence, which however is increasingly diminishing, in the biology community toward appreciating the utility of quantitative tools in addressing questions of biological importance. We survey some of the recent developments in the application of quantitative approaches for investigating different problems in NK cell biology and evaluate opportunities and challenges of using quantitative methods in providing biological insights in NK cell biology.


Assuntos
Biologia Computacional , Simulação por Computador , Células Matadoras Naturais/imunologia , Modelos Imunológicos , Humanos
16.
Front Immunol ; 10: 605, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31024524

RESUMO

Natural Killer (NK) cell activation requires integration of inhibitory and activating signaling. Inhibitory signals are determined by members of the killer cell immunoglobulin-like receptor (KIR) family, which have major histocompatibility complex (MHC) class I ligands. Loss of this inhibitory signal leads to NK cell activation. Thus, down-regulation of MHC I during viral infection or cancer induces NK cell activation. However, NK cell activation in the presence of MHC-I has been demonstrated for HLA-C*0102 through changes in its peptide content: "peptide antagonism." Here we identify an antagonist peptide for HLA-C*0304 suggesting that peptide antagonism is a generalizable phenomenon and, using a combination of mathematical modeling, confocal imaging, and immune-assays, we quantitatively determine mechanisms that underlie peptide antagonism in inhibitory KIR2DL2/3 signaling. These data provide a mechanism for NK cell activation based on a reduction of inhibitory signaling in the presence of preserved levels of MHC class I.


Assuntos
Células Matadoras Naturais/imunologia , Receptores KIR2DL2/metabolismo , Antígenos/imunologia , Células Cultivadas , Análise por Conglomerados , Antígenos HLA-C/metabolismo , Humanos , Ativação Linfocitária , Microscopia Confocal , Modelos Teóricos , Peptídeos/imunologia , Ligação Proteica , Receptor Cross-Talk , Transdução de Sinais
17.
R Soc Open Sci ; 5(11): 180810, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30564392

RESUMO

Otitis media (OM) is a common polymicrobial infection of the middle ear in children under the age of 15 years. A widely used experimental strategy to analyse roles of specific phenotypes of bacterial pathogens of OM is to study changes in co-infection kinetics of bacterial populations in animal models when a wild-type bacterial strain is replaced by a specific isogenic mutant strain in the co-inoculating mixtures. As relationships between the OM bacterial pathogens within the host are regulated by many interlinked processes, connecting the changes in the co-infection kinetics to a bacterial phenotype can be challenging. We investigated middle ear co-infections in adult chinchillas (Chinchilla lanigera) by two major OM pathogens: non-typeable Haemophilus influenzae (NTHi) and Moraxella catarrhalis (Mcat), as well as isogenic mutant strains in each bacterial species. We analysed the infection kinetic data using Lotka-Volterra population dynamics, maximum entropy inference and Akaike information criteria-(AIC)-based model selection. We found that changes in relationships between the bacterial pathogens that were not anticipated in the design of the co-infection experiments involving mutant strains are common and were strong regulators of the co-infecting bacterial populations. The framework developed here allows for a systematic analysis of host-host variations of bacterial populations and small sizes of animal cohorts in co-infection experiments to quantify the role of specific mutant strains in changing the infection kinetics. Our combined approach can be used to analyse the functional footprint of mutant strains in regulating co-infection kinetics in models of experimental OM and other polymicrobial diseases.

18.
Pediatr Res ; 84(3): 341-347, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29976974

RESUMO

BACKGROUND: Pharyngeal contractility is critical for safe bolus propulsion. Pharyngeal contractile vigor can be measured by Pharyngeal Contractile Integral (PhCI): product of mean pharyngeal contractile amplitude, length, and duration. We characterized PhCI in neonates and examined the hypothesis that PhCI differs with mode of stimulation. METHODS: Nineteen neonates born at 38.6 (34-41) weeks gestation were evaluated at 42.9 (40.4-44.0) weeks postmenstrual age using high-resolution manometry (HRM). PhCI was calculated using: (a) Conventional and (b) Automated Swallow Detection algorithm (ASDA) methods. Contractility metrics of all pharyngeal regions were examined using mixed statistical models during spontaneous and adaptive state (pharyngeal and oral stimulus) swallowing. RESULTS: PhCI of oral stimuli swallows were distinct from pharyngeal stimuli and spontaneous swallows (P < 0.05). Correlation between conventional and ASDA methods was high (P < 0.001). PhCI increased with swallows for pharyngeal stimulation (P < 0.05) but remained stable for swallows with oral stimulation. PhCI differed between proximal and distal pharynx (P < 0.001). CONCLUSIONS: PhCI is a novel reliable metric capable of distinguishing (1) proximal and distal pharyngeal activity, (2) effects of oral and pharyngeal stimulation, and (3) effects of prolonged stimulation. Changes in pharyngeal contractility with maturation, disease, and therapies can be examined with PhCI.


Assuntos
Deglutição/fisiologia , Esfíncter Esofágico Superior/fisiologia , Manometria , Contração Muscular/fisiologia , Faringe/fisiologia , Algoritmos , Esfíncter Esofágico Superior/anatomia & histologia , Comportamento Alimentar , Feminino , Humanos , Recém-Nascido , Masculino , Faringe/anatomia & histologia , Pressão , Reflexo
19.
mBio ; 8(6)2017 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-29259083

RESUMO

Biofilms formed in the middle ear by nontypeable Haemophilus influenzae (NTHI) are central to the chronicity, recurrence, and refractive nature of otitis media (OM). However, mechanisms that underlie the emergence of specific NTHI biofilm structures are unclear. We combined computational analysis tools and in silico modeling rooted in statistical physics with confocal imaging of NTHI biofilms formed in vitro during static culture in order to identify mechanisms that give rise to distinguishing morphological features. Our analysis of confocal images of biofilms formed by NTHI strain 86-028NP using pair correlations of local bacterial densities within sequential planes parallel to the substrate showed the presence of fractal structures of short length scales (≤10 µm). The in silico modeling revealed that extracellular DNA (eDNA) and type IV pilus (Tfp) expression played important roles in giving rise to the fractal structures and allowed us to predict a substantial reduction of these structures for an isogenic mutant (ΔcomE) that was significantly compromised in its ability to release eDNA into the biofilm matrix and had impaired Tfp function. This prediction was confirmed by analysis of confocal images of in vitro ΔcomE strain biofilms. The fractal structures potentially generate niches for NTHI survival in the hostile middle ear microenvironment by dramatically increasing the contact area of the biofilm with the surrounding environment, facilitating nutrient exchange, and by generating spatial positive feedback to quorum signaling.IMPORTANCE NTHI is a major bacterial pathogen for OM, which is a common ear infection in children worldwide. Chronic OM is associated with bacterial biofilm formation in the middle ear; therefore, knowledge of the mechanisms that underlie NTHI biofilm formation is important for the development of therapeutic strategies for NTHI-associated OM. Our combined approach using confocal imaging of NTHI biofilms formed in vitro and mathematical tools for analysis of pairwise density correlations and agent-based modeling revealed that eDNA and Tfp expression were important factors in the development of fractal structures in NTHI biofilms. These structures may help NTHI survive in hostile environments, such as the middle ear. Our in silico model can be used in combination with laboratory or animal modeling studies to further define the mechanisms that underlie NTHI biofilm development during OM and thereby guide the rational design of, and optimize time and cost for, benchwork and preclinical studies.


Assuntos
Biofilmes/crescimento & desenvolvimento , DNA Bacteriano/metabolismo , Fímbrias Bacterianas/metabolismo , Haemophilus influenzae/fisiologia , Simulação por Computador , Processamento de Imagem Assistida por Computador , Microscopia Confocal
20.
R Soc Open Sci ; 4(8): 170811, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28879015

RESUMO

Single-cell responses are shaped by the geometry of signalling kinetic trajectories carved in a multidimensional space spanned by signalling protein abundances. It is, however, challenging to assay a large number (more than 3) of signalling species in live-cell imaging, which makes it difficult to probe single-cell signalling kinetic trajectories in large dimensions. Flow and mass cytometry techniques can measure a large number (4 to more than 40) of signalling species but are unable to track single cells. Thus, cytometry experiments provide detailed time-stamped snapshots of single-cell signalling kinetics. Is it possible to use the time-stamped cytometry data to reconstruct single-cell signalling trajectories? Borrowing concepts of conserved and slow variables from non-equilibrium statistical physics we develop an approach to reconstruct signalling trajectories using snapshot data by creating new variables that remain invariant or vary slowly during the signalling kinetics. We apply this approach to reconstruct trajectories using snapshot data obtained from in silico simulations, live-cell imaging measurements, and, synthetic flow cytometry datasets. The application of invariants and slow variables to reconstruct trajectories provides a radically different way to track objects using snapshot data. The approach is likely to have implications for solving matching problems in a wide range of disciplines.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...